Comparison of test results between Stats tester and R
1. The Example data is entered by tapping the Example button of the Stats tester app.
2. When you tap the Calc button in the Stats tester, the p-value will be displayed at the end of the output window.
3. If you're using R language on a Mac or Windows PC : Copy the R code in the box, paste it to R screen of your PC to the right of the prompt (>), and press the return key. The p-value will appear at the end of the first line of the R result.
3. [One-Sample t-Test (to Specified Mean)]
Example
A : 1, 3, 2, 5, 6, 11
Specified Mean : 8
Stats tester
p = 0.073464 (2 tails)
R
Code:
A <- c(1,3,2,5,6,11)
mu <- 8
t.test(A, mu=8, alt="two.sided")
Result
p = 0.0734649 (2 tails)
4. [Two-Sample t-Test (Student's and Welch's t-Tests)]
Example
A : 1, 2, 3, 4, 5
B : 11, 13, 15, 17
Stats tester
Student p = 0.000097 (2 tails)
Welch p = 0.000846 (2 tails)
R
Code:
A <- c(1, 2, 3, 4, 5)
B <- c(11, 13, 15, 17)
t.test(A, B, alt="two.sided",var.equal=T) # (Student)
t.test(A, B, alt="two.sided",var.equal=F) # (Welch)
Result
Student p = 0.000097 (2 tails)
Welch p = 0.0008459 (2 tails)
5. [Paired-Sample t-test]
Example
A : 22, 20, 31, 25
B : 11, 15, 28, 20
Stats tester
p = 0.040519 (2 tails)
R
Code:
A <- c(22, 20, 31, 25)
B <- c(11, 15, 28, 20)
t.test(A, B, paired=T, alt="two.sided")
Result
p = 0.04052 (2 tails)
6. [One-Way Analysis of Variance (ANOVA)]
Example
A : 13, 12, 11, 11
B : 9, 8, 9, 7, 10
C : 12, 14, 11, 13
D : 13, 14, 13, 15
Stats tester
p = 0.000059
R
Code:
vx <-c(13, 12, 11, 11, 9, 8, 9, 7, 10, 12, 14, 11, 13, 13, 14, 13, 15 )
fx=factor(rep(c("A", "B", "C", "D"), c(4, 5, 4, 4)))
anova(aov(vx~fx))
Result
p = 5.874e-05
7. [Linear Regression and Test for Pearson Correlation Coefficient]
Example
A : 1, 4, 4, 6, 8
B : 5, 8, 7, 10, 11
Stats tester
p = 0.003436 (2 tails)
R
Code:
A <- c(1, 4, 4, 6, 8)
B <- c(5, 8, 7, 10,11)
cor.test(A, B, method="pearson")
Result
p = 0.003436 (2 tails)
8. [Shapiro-Wilk Test (Normality) and Q-Q Plot]
Example
A : 1, 2, 3, 3.9, 4.2, 4.5, 5, 5.4, 5.6 ,5.8, 6.2, 6.4, 6.6, 7, 7.5, 7.8, 8.1, 9, 10, 11
Stats tester
p = 0.999942
R
Code:
A <- c(1, 2, 3, 3.9, 4.2, 4.5, 5, 5.4, 5.6 ,5.8, 6.2, 6.4, 6.6, 7, 7.5, 7.8, 8.1, 9, 10, 11)
shapiro.test(A)
Result
p = 0.999942
9. [Chi-Square Test (2X2 Independence)]
Example
110, 90
88, 112
Stats tester
p = 0.035720 (Continuity corrected)
p = 0.027799 (Continuity not corrected)
R
Code:
table <- matrix(c(110, 90, 88, 112), ncol=2, byrow=T)
chisq.test(table, correct=T)
chisq.test(table, correct=F)
Result
p = 0.03572 (Continuity corrected)
p = 0.027799 (Continuity not corrected)